Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Nutr ; 11: 1381779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595789

RESUMEN

Background: To identify key and shared insulin resistance (IR) molecular signatures across all insulin-sensitive tissues (ISTs), and their potential targeted drugs. Methods: Three datasets from Gene Expression Omnibus (GEO) were acquired, in which the ISTs (fat, muscle, and liver) were from the same individual with obese mice. Integrated bioinformatics analysis was performed to obtain the differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was carried out to determine the "most significant trait-related genes" (MSTRGs). Enrichment analysis and PPI network were performed to find common features and novel hub genes in ISTs. The shared genes of DEGs and genes between DEGs and MSTRGs across four ISTs were identified as key IR therapeutic target. The Attie Lab diabetes database and obese rats were used to verify candidate genes. A medical drug-gene interaction network was conducted by using the Comparative Toxicogenomics Database (CTD) to find potential targeted drugs. The candidate drug was validated in Hepa1-6 cells. Results: Lipid metabolic process, mitochondrion, and oxidoreductase activity as common features were enriched from ISTs under an obese context. Thirteen shared genes (Ubd, Lbp, Hp, Arntl, Cfd, Npas2, Thrsp., Tpx2, Pkp1, Sftpd, Mthfd2, Tnfaip2, and Vnn3) of DEGs across ISTs were obtained and confirmed. Among them, Ubd was the only shared gene between DEGs and MSTRGs across four ISTs. The expression of Ubd was significantly upregulated across four ISTs in obese rats, especially in the liver. The IR Hepa1-6 cell models treated with dexamethasone (Dex), palmitic acid (PA), and 2-deoxy-D-ribose (dRib) had elevated expression of Ubd. Knockdown of Ubd increased the level of p-Akt. A lowing Ubd expression drug, promethazine (PMZ) from CTD analysis rescued the decreased p-Akt level in IR Hepa1-6 cells. Conclusion: This study revealed Ubd, a novel and shared IR molecular signature across four ISTs, as an effective biomarker and provided new insight into the mechanisms of IR. PMZ was a candidate drug for IR which increased p-Akt level and thus improved IR by targeting Ubd and downregulation of Ubd expression. Both Ubd and PMZ merit further clinical translational investigation to improve IR.

2.
Int J Biol Macromol ; 268(Pt 2): 131678, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657921

RESUMEN

BACKGROUND: Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS: Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS: This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).

3.
Sci Total Environ ; 926: 171937, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527534

RESUMEN

The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.


Asunto(s)
Chlorella vulgaris , Disulfuros , Metaloides , Antimonio/metabolismo , Molibdeno/toxicidad , Adsorción , Chlorella vulgaris/metabolismo , Glutatión
4.
Artículo en Inglés | MEDLINE | ID: mdl-38189805

RESUMEN

The laboratory practice "Primary culture and directional differentiation of rat bone marrow mesenchymal stem cells (BMSCs)" is part of a required course for sophomore medical students at Tongji university, which has been conducted since 2012. Blended learning has been widely applied in medical courses. Based on a student-centered teaching philosophy, we reconstructed a comprehensive stem cell laboratory module with blended learning in 2021, aiming to facilitate students in enhancing their understanding of the multi-lineage differentiation potential of stem cells and improve their experimental skills, self-directed learning ability, and innovative thinking. First, we constructed in-depth online study resources, including videos demonstrating laboratory procedures, a PowerPoint slide deck, and published literature on student self-learning before class. In class, students performed a primary culture of BMSCs, freely chose among adipogenic, osteogenic, or chondrogenic differentiation, and used cytochemical or immunofluorescence staining for identification. After class, the extracurricular part involved performing quantitative polymerase chain reaction to examine the expression of multi-lineage differentiation marker genes, which was designed as an elective. After 2 years of practice, positive feedback was obtained from both students and faculty members who achieved, the learning goal as expected. The reconstructed stem cell laboratory module provides comprehensive practice opportunities for students. Students have a better understanding of BMSC at the molecular, cellular, and functional levels and have improved their experimental skills, which forms a basis for scientific research for medical students. Introducing blended learning into other medical laboratory practices thus seems valuable.

5.
Glia ; 72(3): 504-528, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37904673

RESUMEN

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Degeneración Retiniana , Humanos , Ratas , Animales , Degeneración Retiniana/patología , Células Ependimogliales/metabolismo , Estreptozocina/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta3/efectos adversos , Factor de Crecimiento Transformador beta3/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Gliosis/patología , Retina/metabolismo , Retinopatía Diabética/patología , ARN Mensajero/metabolismo
6.
J Hazard Mater ; 465: 133204, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103293

RESUMEN

Hexagonal boron nitride (h-BN) nanomaterials have attracted numerous attentions for application in various fields, including environmental governance. Understanding the environmental implications of h-BN is a prerequisite for its safe and sustainable use; nevertheless, information on the negative effect of h-BN on aquatic organisms and the underlying toxicity mechanisms is scarce. The present study found that low exposure doses (0.1-1 µg/mL) of micron-sized h-BN lamella apparently suppressed (maximally 45.3%) the growth of Chlorella vulgaris (a freshwater alga) via membrane damages and metabolic reprogramming. Experimental and simulation results verified that h-BN can penetrate into and then extract phospholipids from the cell membrane of algae due to the strong hydrophobic interactions between h-BN nanosheets and lipids, resulting in membrane permeabilization and integrity reduction. Oxidative stress-triggered lipid peroxidation also contributes to membrane destruction of algae. Metabolomics assay demonstrated that h-BN down-regulated the CO2-fixation associated Calvin cycle and glycolysis/gluconeogenesis pathways in algae, thereby inhibiting energy synthesis and antioxidation process. Despite releasing soluble B inside cells, the B species exhibited negligible toxicity. These findings highlight the phenomena and mechanisms of h-BN toxicity in photosynthetic algae, which have great implications for guiding their safe use under the scenarios of global carbon neutrality.


Asunto(s)
Compuestos de Boro , Carbono , Chlorella vulgaris , Conservación de los Recursos Naturales , Política Ambiental , Agua Dulce
7.
Stem Cell Res Ther ; 14(1): 281, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784129

RESUMEN

BACKGROUND: T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS: A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS: Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS: Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.


Asunto(s)
Conjuntivitis Alérgica , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Conjuntivitis Alérgica/tratamiento farmacológico , Conjuntivitis Alérgica/patología , Conjuntiva/metabolismo , Conjuntiva/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical
8.
Ecotoxicol Environ Saf ; 256: 114913, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062264

RESUMEN

The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS2) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS2 toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS2 nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS2 due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS2 promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS2, and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS2) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.


Asunto(s)
Antibacterianos , Molibdeno , Antibacterianos/farmacología , Molibdeno/farmacología , Genes Bacterianos , Suelo , Transferencia de Gen Horizontal , Farmacorresistencia Microbiana/genética , Escherichia coli , Plásmidos
9.
Front Immunol ; 14: 1125183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063926

RESUMEN

Background: Systemic sclerosis (SSc) is a rare autoimmune disease characterized by extensive skin fibrosis. There are no effective treatments due to the severity, multiorgan presentation, and variable outcomes of the disease. Here, integrated bioinformatics was employed to discover tissue-specific expressed hub genes associated with SSc, determine potential competing endogenous RNAs (ceRNA) regulatory networks, and identify potential targeted drugs. Methods: In this study, four datasets of SSc were acquired. To identify the genes specific to tissues or organs, the BioGPS web database was used. For differentially expressed genes (DEGs), functional and enrichment analyses were carried out, and hub genes were screened and shown in a network of protein-protein interactions (PPI). The potential lncRNA-miRNA-mRNA ceRNA network was constructed using the online databases. The specifically expressed hub genes and ceRNA network were validated in the SSc mouse and in normal mice. We also used the receiver operating characteristic (ROC) curve to determine the diagnostic values of effective biomarkers in SSc. Finally, the Drug-Gene Interaction Database (DGIdb) identified specific medicines linked to hub genes. Results: The pooled datasets identified a total of 254 DEGs. The tissue/organ-specifically expressed genes involved in this analysis are commonly found in the hematologic/immune system and bone/muscle tissue. The enrichment analysis of DEGs revealed the significant terms such as regulation of actin cytoskeleton, immune-related processes, the VEGF signaling pathway, and metabolism. Cytoscape identified six gene cluster modules and 23 hub genes. And 4 hub genes were identified, including Serpine1, CCL2, IL6, and ISG15. Consistently, the expression of Serpine1, CCL2, IL6, and ISG15 was significantly higher in the SSc mouse model than in normal mice. Eventually, we found that MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1 may be promising RNA regulatory pathways in SSc. Besides, ten potential therapeutic drugs associated with the hub gene were identified. Conclusions: This study revealed tissue-specific expressed genes, SERPINE1, CCL2, IL6, and ISG15, as effective biomarkers and provided new insight into the mechanisms of SSc. Potential RNA regulatory pathways, including MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1, contribute to our knowledge of SSc. Furthermore, the analysis of drug-hub gene interactions predicted TIPLASININ, CARLUMAB and BINDARIT as candidate drugs for SSc.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Esclerodermia Sistémica , Animales , Ratones , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , Interleucina-6/metabolismo , MicroARNs/genética , Biomarcadores/metabolismo , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Biología Computacional
10.
Exp Mol Med ; 55(5): 898-909, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121966

RESUMEN

Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.


Asunto(s)
Diabetes Mellitus Tipo 1 , Osteoporosis , Ratas , Animales , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/farmacología , Actinas/genética , Osteoclastos/metabolismo , Osteoporosis/etiología , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
11.
Mol Ther ; 31(6): 1846-1856, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36860134

RESUMEN

Hepatocyte transplantation can be an effective treatment for patients with certain liver-based metabolic disorders and liver injuries. Hepatocytes are usually infused into the portal vein, from which hepatocytes migrate into the liver and integrate into the liver parenchyma. However, early cell loss and poor liver engraftment represent major hurdles to sustaining the recovery of diseased livers after transplantation. In the present study, we found that ROCK (Rho-associated kinase) inhibitors significantly enhanced in vivo hepatocyte engraftment. Mechanistic studies suggested that the isolation of hepatocytes caused substantial degradation of cell membrane proteins, including the complement inhibitor CD59, probably due to shear stress-induced endocytosis. ROCK inhibition by ripasudil, a clinically used ROCK inhibitor, can protect transplanted hepatocytes by retaining cell membrane CD59 and blocking the formation of the membrane attack complex. Knockdown of CD59 in hepatocytes eliminates ROCK inhibition-enhanced hepatocyte engraftment. Ripasudil can accelerate liver repopulation of fumarylacetoacetate hydrolase-deficient mice. Our work reveals a mechanism underlying hepatocyte loss after transplantation and provides immediate strategies to enhance hepatocyte engraftment by inhibiting ROCK.


Asunto(s)
Hepatopatías , Hígado , Ratones , Animales , Hígado/metabolismo , Hepatocitos/metabolismo , Vena Porta , Hepatopatías/metabolismo , Activación de Complemento
12.
Chemosphere ; 321: 138166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804254

RESUMEN

The increasing application of engineered nanomaterials (ENMs) unavoidably leads to environmental release and biological exposure. Understanding the potential hazards of ENMs on crops is essential for appropriate utilization and management. Herein, rice seedlings were hydroponically exposed to molybdenum sulfide (MoS2, a typical ENM) nanosheets at 5-20 mg/L for 7 days and then depurated for another 7 days in a fresh culture medium. Exposure to MoS2 triggered irreversible reductions in root length (by 26.3%-69.9%) and tip number (by 22.2%-66.0%). Integration of biochemical assays, transcriptomic and metabolomics found that oxidative stress induced by MoS2 in roots was persistent, whereas the activation of aquaporins, ionic transportation, and energy synthesis was normalized due to the recovery of nutrient uptake. The down-regulated levels of genes and metabolites associated with peroxidases, hemicellulose synthesis, expansins, and auxins caused persistent structural damages (sclerosis and rupture) of root cell walls. Approximately 64.5%-84.8% of internalized MoS2 nanosheets were degraded, and the successive up-regulation of genes encoding cytochrome P450s and glutathione S-transferases reflected the biotransformation and detoxification of MoS2 in the depuration period. These findings provide novel insights into the persistence and recovery of MoS2 phytotoxicity, which will help advance the risk assessment of MoS2 application on environment.


Asunto(s)
Molibdeno , Oryza , Molibdeno/química , Oryza/metabolismo , Estrés Oxidativo , Disulfuros/química
13.
iScience ; 25(10): 105050, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185374

RESUMEN

The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)-CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-ß-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment.

14.
Cell Death Dis ; 13(9): 785, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096985

RESUMEN

Age-related macular degeneration (AMD) is a major vision-threatening disease. Although mesenchymal stem cells (MSCs) exhibit beneficial neural protective effects, their limited differentiation capacity in vivo attenuates their therapeutic function. Therefore, the differentiation of MSCs into retinal pigment epithelial (RPE) cells in vitro and their subsequent transplantation into the subretinal space is expected to improve the outcome of cell therapy. Here, we transdifferentiated human umbilical cord MSCs (hUCMSCs) into induced RPE (iRPE) cells using a cocktail of five transcription factors (TFs): CRX, NR2E1, C-MYC, LHX2, and SIX6. iRPE cells exhibited RPE specific properties, including phagocytic ability, epithelial polarity, and gene expression profile. In addition, high expression of PTPN13 in iRPE cells endows them with an epithelial-to-mesenchymal transition (EMT)-resistant capacity through dephosphorylating syntenin1, and subsequently promoting the internalization and degradation of transforming growth factor-ß receptors. After grafting into the subretinal space of the sodium iodate-induced rat AMD model, iRPE cells demonstrated a better therapeutic function than hUCMSCs. These results suggest that hUCMSC-derived iRPE cells may be promising candidates to reverse AMD pathophysiology.


Asunto(s)
Degeneración Macular , Células Madre Mesenquimatosas , Degeneración Retiniana , Animales , Células Epiteliales/metabolismo , Humanos , Proteínas con Homeodominio LIM/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/terapia , Células Madre Mesenquimatosas/metabolismo , Ratas , Degeneración Retiniana/metabolismo , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Factores de Transcripción/metabolismo , Cordón Umbilical/metabolismo
15.
J Tissue Eng ; 13: 20417314221122123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093432

RESUMEN

To study the biological functions and applications of human amniotic epithelial cell-derived extracellular vesicles (hAEC-EVs), the cargos of hAEC-EVs were analyzed using miRNA sequencing and proteomics analysis. The hAECs and hAEC-EVs in this study had specific characteristics. Multi-omics analyses showed that extracellular matrix (ECM) reorganization, inhibition of excessive myofibroblasts, and promotion of target cell adhesion to the ECM were their primary functions. We evaluated the application of hAEC-EVs for corneal alkali burn healing in rabbits and elucidated the fundamental mechanisms. Slit-lamp images revealed that corneal alkali burns induced central epithelial loss, stromal haze, iris, and pupil obscurity in rabbits. Slit-lamp examination and histological findings indicated that hAEC-EVs facilitated re-epithelialization of the cornea after alkali burns, reduced scar formation and promoted the restoration of corneal tissue transparency. Significantly fewer α-SMA-positive myofibroblasts were observed in the hAEC-EV-treated group than the PBS group. HAEC-EVs effectively promoted the proliferation and migration of hCECs and hCSCs in vitro and activated the focal adhesion signaling pathway. We demonstrated that hAEC-EVs were excellent cell-free candidates for the treatment of ECM lesion-based diseases, including corneal alkali burns. HAEC-EVs promoted ECM reorganization and cell adhesion of target tissues or cells via orderly activation of the focal adhesion signaling pathway.

16.
Exp Eye Res ; 223: 109207, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926646

RESUMEN

Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-ß-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.


Asunto(s)
Transición Epitelial-Mesenquimal , Degeneración Macular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Dasatinib/farmacología , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Degeneración Macular/metabolismo , Quercetina/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Factor de Crecimiento Transformador beta/metabolismo
17.
Front Oncol ; 12: 880100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860559

RESUMEN

Kidney renal clear cell carcinoma (KIRC) has the highest mortality rate and potential for invasion among renal cancers. The diagnosis and treatment of KIRC are becoming challenging because of its diverse pathogenic mechanisms. Glia (GMFB) is a highly conserved growth and differentiation factor for glia cells and neurons, and it is closely associated with neurodegenerative diseases. However, its role in KIRC remains unknown. The present study integrated bioinformatics approaches with suitable meta-analyses to determine the position of GMFB in KIRC. There was a significant decrease in Gmfb expression in KIRC kidneys compared with normal controls. Gmfb expression was negatively associated with pathologic stage, T and M stages, and histologic grade. Univariate and multivariate analyses showed that elevated Gmfb expression was an independent factor for a favorable prognosis. Furthermore, the nomogram verified that Gmfb is a low-risk factor for KIRC. Knockdown of Gmfb in Caki-2 cells increased viability and decreased p21 and p27 levels. Overexpression of Gmfb inhibited Caki-2 cell proliferation, migration, and invasion and decreased mitochondrial membrane potential. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses considering Gmfb co-expressed differentially expressed genes (DEGs) showed that collecting duct acid secretion and mineral absorption ranked were the most important upregulated and downregulated DEGs, respectively. The upregulated hub genes for DEGs were mainly involved in nucleosome assembly, nucleosome organization, and chromatin assembly, and the downregulated hub genes were primarily associated with keratinization. The ratio of tumor-infiltrating immune cells in KIRC tissues was evaluated using CIBERSORTx. The results showed that the Gmfb expression was significantly positively correlated with macrophage M2 cells and mast resting cell infiltration levels and negatively correlated with T follicular helper, T regulatory, and B plasma cell infiltration levels. The former cell types were associated with a beneficial outcome, while the latter had a worse outcome in patients with KIRC. In summary, this study identified GMFB as a novel independent biomarker and therapeutic target for KIRC, and it provides a helpful and distinct individualized treatment strategy for KIRC with a combination of molecular targets and tumor microenvironment.

18.
J Hazard Mater ; 437: 129409, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35752050

RESUMEN

Understanding the role of microplastics (MPs) in the biological fate and toxicity of organic pollutants in food webs is vital for its risk assessment. However, contradictory results and the neglect of MP aging as a factor have led to a research gap, which needs to be filled. Our study discovered that polyamide (PA, a ubiquitous MP in water) MPs clearly facilitated bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in the F0 zebrafish gonads and parental transfer of TDCIPP to the F1 offspring. Rapid TDCIPP desorption in the gut and intestine barrier dysfunction triggered by MPs were the causes for the phenomenon. In contrast to the pristine forms, aged PA with higher hydrophilcity exhibited stronger binding and polar interactions with TDCIPP, and the intestine damage was neglectable, resulting in increased intestinal immobilization and prevented parental transfer of TDCIPP. Additionally, the aggravated body weight loss and decreased length of TDCIPP offspring were relieved after PA aging. The recovery of subintestinal venous plexus angiogenesis, yolk lipid utilization, and ATP synthesis were responsible for the mitigated transgenerational toxicity. Our results highlight the significance of aging on the role of MPs with respect to coexisting pollutants and have great implications for understanding MP-associated risks.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Envejecimiento , Animales , Larva , Microplásticos , Nylons , Organofosfatos , Compuestos Organofosforados/metabolismo , Plásticos/metabolismo , Plásticos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
19.
Environ Sci Technol ; 56(13): 9556-9568, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576172

RESUMEN

Thorough investigations of the environmental fate and risks are necessary for the safe application of engineered nanomaterials. Nevertheless, the current understanding of potential transformations of MoS2 (an intensively studied two-dimensional nanosheet) upon interactions with ubiquitous environmentally relevant thiols (ERTs) in water is limited. This study revealed that two ERTs, l-cysteine and mercaptoacetic acid, could modify MoS2 by covalently grafting thiol groups on S atoms of 1T phases, improving the colloidal persistence and chemical stability of MoS2. Compared with the pristine form, MoS2-thiols with higher dispersity exhibited significantly mitigated envelopment and ultrastructural damage to microalgae. MoS2-triggered growth inhibition, upregulation of reactive oxygen species, photosynthetic injury, and metabolic perturbation in algae were remarkably attenuated by ERTs. The diminished capability for MoS2 to generate reactive intermediates and glutathione oxidation driven by ERTs caused the weakness of oxidative stress and negative effects. Additionally, molecular dynamics simulations demonstrated that ERTs altered the extent of the influence of MoS2 on the secondary structures and functions of adsorbed intracellular proteins, which also contributed to the lower phytotoxicity of MoS2. Our findings provide evidence for the crucial role of specific organic ligands in the risk of MoS2 in aquatic environments.


Asunto(s)
Molibdeno , Nanoestructuras , Disulfuros , Nanoestructuras/química , Nanoestructuras/toxicidad , Compuestos de Sulfhidrilo
20.
Front Endocrinol (Lausanne) ; 13: 843721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432190

RESUMEN

Diabetic kidney disease (DKD) is a long-term major microvascular complication of uncontrolled hyperglycemia and one of the leading causes of end-stage renal disease (ESDR). The pathogenesis of DKD has not been fully elucidated, and effective therapy to completely halt DKD progression to ESDR is lacking. This study aimed to identify critical molecular signatures and develop novel therapeutic targets for DKD. This study enrolled 10 datasets consisting of 93 renal samples from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). Networkanalyst, Enrichr, STRING, and Cytoscape were used to conduct the differentially expressed genes (DEGs) analysis, pathway enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene screening. The shared DEGs of type 1 diabetic kidney disease (T1DKD) and type 2 diabetic kidney disease (T2DKD) datasets were performed to identify the shared vital pathways and hub genes. Strepotozocin-induced Type 1 diabetes mellitus (T1DM) rat model was prepared, followed by hematoxylin & eosin (HE) staining, and Oil Red O staining to observe the lipid-related morphological changes. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to validate the key DEGs of interest from a meta-analysis in the T1DKD rat. Using meta-analysis, 305 shared DEGs were obtained. Among the top 5 shared DEGs, Tmem43, Mpv17l, and Slco1a1, have not been reported relevant to DKD. Ketone body metabolism ranked in the top 1 in the KEGG enrichment analysis. Coasy, Idi1, Fads2, Acsl3, Oxct1, and Bdh1, as the top 10 down-regulated hub genes, were first identified to be involved in DKD. The qRT-PCR verification results of the novel hub genes were mostly consistent with the meta-analysis. The positive Oil Red O staining showed that the steatosis appeared in tubuloepithelial cells at 6 w after DM onset. Taken together, abnormal ketone body metabolism may be the key factor in the progression of DKD. Targeting metabolic abnormalities of ketone bodies may represent a novel therapeutic strategy for DKD. These identified novel molecular signatures in DKD merit further clinical investigation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Femenino , Humanos , Cetonas/metabolismo , Cetonas/uso terapéutico , Riñón/metabolismo , Metabolismo de los Lípidos , Masculino , Proteínas de la Membrana/metabolismo , Mapas de Interacción de Proteínas/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...